Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Scrambled geometric net integration over general product spaces (1503.02737v1)

Published 10 Mar 2015 in cs.NA, math.NA, and stat.CO

Abstract: Quasi-Monte Carlo (QMC) sampling has been developed for integration over $[0,1]s$ where it has superior accuracy to Monte Carlo (MC) for integrands of bounded variation. Scrambled net quadrature gives allows replication based error estimation for QMC with at least the same accuracy and for smooth enough integrands even better accuracy than plain QMC. Integration over triangles, spheres, disks and Cartesian products of such spaces is more difficult for QMC because the induced integrand on a unit cube may fail to have the desired regularity. In this paper, we present a construction of point sets for numerical integration over Cartesian products of $s$ spaces of dimension $d$, with triangles ($d=2$) being of special interest. The point sets are transformations of randomized $(t,m,s)$-nets using recursive geometric partitions. The resulting integral estimates are unbiased and their variance is $o(1/n)$ for any integrand in $L2$ of the product space. Under smoothness assumptions on the integrand, our randomized QMC algorithm has variance $O(n{-1 - 2/d} (\log n){s-1})$, for integration over $s$-fold Cartesian products of $d$-dimensional domains, compared to $O(n{-1})$ for ordinary Monte Carlo.

Citations (8)

Summary

We haven't generated a summary for this paper yet.