Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Nonparametric Bounds and Sensitivity Analysis of Treatment Effects (1503.01598v1)

Published 5 Mar 2015 in stat.ME

Abstract: This paper considers conducting inference about the effect of a treatment (or exposure) on an outcome of interest. In the ideal setting where treatment is assigned randomly, under certain assumptions the treatment effect is identifiable from the observable data and inference is straightforward. However, in other settings such as observational studies or randomized trials with noncompliance, the treatment effect is no longer identifiable without relying on untestable assumptions. Nonetheless, the observable data often do provide some information about the effect of treatment, that is, the parameter of interest is partially identifiable. Two approaches are often employed in this setting: (i) bounds are derived for the treatment effect under minimal assumptions, or (ii) additional untestable assumptions are invoked that render the treatment effect identifiable and then sensitivity analysis is conducted to assess how inference about the treatment effect changes as the untestable assumptions are varied. Approaches (i) and (ii) are considered in various settings, including assessing principal strata effects, direct and indirect effects and effects of time-varying exposures. Methods for drawing formal inference about partially identified parameters are also discussed.

Summary

We haven't generated a summary for this paper yet.