Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Statistical Limits of Convex Relaxations (1503.01442v2)

Published 4 Mar 2015 in stat.ML

Abstract: Many high dimensional sparse learning problems are formulated as nonconvex optimization. A popular approach to solve these nonconvex optimization problems is through convex relaxations such as linear and semidefinite programming. In this paper, we study the statistical limits of convex relaxations. Particularly, we consider two problems: Mean estimation for sparse principal submatrix and edge probability estimation for stochastic block model. We exploit the sum-of-squares relaxation hierarchy to sharply characterize the limits of a broad class of convex relaxations. Our result shows statistical optimality needs to be compromised for achieving computational tractability using convex relaxations. Compared with existing results on computational lower bounds for statistical problems, which consider general polynomial-time algorithms and rely on computational hardness hypotheses on problems like planted clique detection, our theory focuses on a broad class of convex relaxations and does not rely on unproven hypotheses.

Summary

We haven't generated a summary for this paper yet.