Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Accelerating Metropolis-Hastings algorithms by Delayed Acceptance (1503.00996v2)

Published 3 Mar 2015 in stat.CO

Abstract: MCMC algorithms such as Metropolis-Hastings algorithms are slowed down by the computation of complex target distributions as exemplified by huge datasets. We offer in this paper a useful generalisation of the Delayed Acceptance approach, devised to reduce the computational costs of such algorithms by a simple and universal divide-and-conquer strategy. The idea behind the generic acceleration is to divide the acceptance step into several parts, aiming at a major reduction in computing time that out-ranks the corresponding reduction in acceptance probability. Each of the components can be sequentially compared with a uniform variate, the first rejection signalling that the proposed value is considered no further. We develop moreover theoretical bounds for the variance of associated estimators with respect to the variance of the standard Metropolis-Hastings and detail some results on optimal scaling and general optimisation of the procedure. We illustrate those accelerating features on a series of examples

Citations (52)

Summary

We haven't generated a summary for this paper yet.