Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Symmetric quiver Hecke algebras and R-matrices of Quantum affine algebras IV (1502.07415v1)

Published 26 Feb 2015 in math.RT and math.QA

Abstract: Let $U'q(\mathfrak{g})$ be a twisted affine quantum group of type $A{N}{(2)}$ or $D_{N}{(2)}$ and let $\mathfrak{g}{0}$ be the finite-dimensional simple Lie algebra of type $A{N}$ or $D_{N}$. For a Dynkin quiver of type $\mathfrak{g}{0}$, we define a full subcategory ${\mathcal C}{Q}{(2)}$ of the category of finite-dimensional integrable $U'q(\mathfrak{g})$-modules, a twisted version of the category ${\mathcal C}{Q}$ introduced by Hernandez and Leclerc. Applying the general scheme of affine Schur-Weyl duality, we construct an exact faithful KLR-type duality functor ${\mathcal F}{Q}{(2)}: Rep(R) \rightarrow {\mathcal C}{Q}{(2)}$, where $Rep(R)$ is the category of finite-dimensional modules over the quiver Hecke algebra $R$ of type $\mathfrak{g}{0}$ with nilpotent actions of the generators $x_k$. We show that ${\mathcal F}{Q}{(2)}$ sends any simple object to a simple object and induces a ring isomorphism $K(Rep(R)) \simeq K({\mathcal C}_{Q}{(2)})$.

Summary

We haven't generated a summary for this paper yet.