Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Counting points of schemes over finite rings and counting representations of arithmetic lattices (1502.07004v2)

Published 24 Feb 2015 in math.GR, math.AG, math.NT, and math.RT

Abstract: We relate the singularities of a scheme $X$ to the asymptotics of the number of points of $X$ over finite rings. This gives a partial answer to a question of Mustata. We use this result to count representations of arithmetic lattices. More precisely, if $\Gamma$ is an arithmetic lattice whose $\mathbb{Q}$-rank is greater than one, let $r_n(\Gamma)$ be the number of irreducible $n$-dimensional representations of $\Gamma$ up to isomorphism. We prove that there is a constant $C$ (for example, $C=746$ suffices) such that $r_n(\Gamma)=O(nC)$ for every such $\Gamma$. This answers a question of Larsen and Lubotzky.

Summary

We haven't generated a summary for this paper yet.