2000 character limit reached
Monoidal categorification of cluster algebras II (1502.06714v1)
Published 24 Feb 2015 in math.RT and math.QA
Abstract: We prove that the quantum unipotent coordinate algebra $A_q(\mathfrak{n}(w))\ $ associated with a symmetric Kac-Moody algebra and its Weyl group element $w$ has a monoidal categorification as a quantum cluster algebra. As an application of our earlier work, we achieve it by showing the existence of a quantum monoidal seed of $A_q(\mathfrak{n}(w))$ which admits the first-step mutations in all the directions. As a consequence, we solve the conjecture that any cluster monomial is a member of the upper global basis up to a power of $q{1/2}$.