Nearly optimal classification for semimetrics
Abstract: We initiate the rigorous study of classification in semimetric spaces, which are point sets with a distance function that is non-negative and symmetric, but need not satisfy the triangle inequality. For metric spaces, the doubling dimension essentially characterizes both the runtime and sample complexity of classification algorithms --- yet we show that this is not the case for semimetrics. Instead, we define the {\em density dimension} and discover that it plays a central role in the statistical and algorithmic feasibility of learning in semimetric spaces. We present nearly optimal sample compression algorithms and use these to obtain generalization guarantees, including fast rates. The latter hold for general sample compression schemes and may be of independent interest.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.