Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Mean Field and Classical Limits of Quantum Mechanics (1502.06143v4)

Published 21 Feb 2015 in math.AP, math-ph, and math.MP

Abstract: The main result in this paper is a new inequality bearing on solutions of the $N$-body linear Schr\"{o}dinger equation and of the mean field Hartree equation. This inequality implies that the mean field limit of the quantum mechanics of $N$ identical particles is uniform in the classical limit and provides a quantitative estimate of the quality of the approximation. This result applies to the case of $C{1,1}$ interaction potentials. The quantity measuring the approximation of the $N$-body quantum dynamics by its mean field limit is analogous to the Monge-Kantorovich (or Wasserstein) distance with exponent $2$. The inequality satisfied by this quantity is reminiscent of the work of Dobrushin on the mean field limit in classical mechanics [Func. Anal. Appl. 13 (1979), 115-123]. Our approach of this problem is based on a direct analysis of the $N$-particle Liouville equation, and avoids using techniques based on the BBGKY hierarchy or on second quantization.

Summary

We haven't generated a summary for this paper yet.