Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Affective Music Information Retrieval (1502.05131v1)

Published 18 Feb 2015 in cs.IR

Abstract: Much of the appeal of music lies in its power to convey emotions/moods and to evoke them in listeners. In consequence, the past decade witnessed a growing interest in modeling emotions from musical signals in the music information retrieval (MIR) community. In this article, we present a novel generative approach to music emotion modeling, with a specific focus on the valence-arousal (VA) dimension model of emotion. The presented generative model, called \emph{acoustic emotion Gaussians} (AEG), better accounts for the subjectivity of emotion perception by the use of probability distributions. Specifically, it learns from the emotion annotations of multiple subjects a Gaussian mixture model in the VA space with prior constraints on the corresponding acoustic features of the training music pieces. Such a computational framework is technically sound, capable of learning in an online fashion, and thus applicable to a variety of applications, including user-independent (general) and user-dependent (personalized) emotion recognition and emotion-based music retrieval. We report evaluations of the aforementioned applications of AEG on a larger-scale emotion-annotated corpora, AMG1608, to demonstrate the effectiveness of AEG and to showcase how evaluations are conducted for research on emotion-based MIR. Directions of future work are also discussed.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ju-Chiang Wang (24 papers)
  2. Yi-Hsuan Yang (89 papers)
  3. Hsin-Min Wang (97 papers)
Citations (6)

Summary

We haven't generated a summary for this paper yet.