Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Random dynamical systems for stochastic evolution equations driven by multiplicative fractional Brownian noise with Hurst parameters $H\in (1/3,1/2]$ (1502.05070v1)

Published 17 Feb 2015 in math.DS

Abstract: We consider the stochastic evolution equation $ du=Audt+G(u)d\omega,\quad u(0)=u_0 $ in a separable Hilbert--space $V$. Here $G$ is supposed to be three times Fr\'echet--differentiable and $\omega$ is a trace class fractional Brownian--motion with Hurst parameter $H\in (1/3,1/2]$. We prove the existence of a global solution where exceptional sets are independent of the initial state $u_0\in V$. In addition, we show that the above equation generates a random dynamical system.

Summary

We haven't generated a summary for this paper yet.