Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Parsimonious and Efficient Likelihood Composition by Gibbs Sampling (1502.04800v1)

Published 17 Feb 2015 in stat.ME

Abstract: The traditional maximum likelihood estimator (MLE) is often of limited use in complex high-dimensional data due to the intractability of the underlying likelihood function. Maximum composite likelihood estimation (McLE) avoids full likelihood specification by combining a number of partial likelihood objects depending on small data subsets, thus enabling inference for complex data. A fundamental difficulty in making the McLE approach practicable is the selection from numerous candidate likelihood objects for constructing the composite likelihood function. In this paper, we propose a flexible Gibbs sampling scheme for optimal selection of sub-likelihood components. The sampled composite likelihood functions are shown to converge to the one maximally informative on the unknown parameters in equilibrium, since sub-likelihood objects are chosen with probability depending on the variance of the corresponding McLE. A penalized version of our method generates sparse likelihoods with a relatively small number of components when the data complexity is intense. Our algorithms are illustrated through numerical examples on simulated data as well as real genotype SNP data from a case-control study.

Summary

We haven't generated a summary for this paper yet.