Papers
Topics
Authors
Recent
Search
2000 character limit reached

Improving Imprecise Compressive Sensing Models

Published 16 Feb 2015 in cs.IT and math.IT | (1502.04538v3)

Abstract: Random sampling in compressive sensing (CS) enables the compression of large amounts of input signals in an efficient manner, which is useful for many applications. CS reconstructs the compressed signals exactly with overwhelming probability when incoming data can be sparsely represented with a few components. However, the theory of CS framework including random sampling has been focused on exact recovery of signal; impreciseness in signal recovery has been neglected. This can be problematic when there is uncertainty in the number of sparse components such as signal sparsity in dynamic systems that can change over time. We present a new theoretical framework that handles uncertainty in signal recovery from the perspective of recovery success and quality. We show that the signal recovery success in our model is more accurate than the success probability analysis in the CS framework. Our model is then extended to the case where the success or failure of signal recovery can be relaxed. We represent the number of components included in signal recovery with a right-tailed distribution and focus on recovery quality. Experimental results confirm the accuracy of our model in dynamic systems.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.