Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving Imprecise Compressive Sensing Models (1502.04538v3)

Published 16 Feb 2015 in cs.IT and math.IT

Abstract: Random sampling in compressive sensing (CS) enables the compression of large amounts of input signals in an efficient manner, which is useful for many applications. CS reconstructs the compressed signals exactly with overwhelming probability when incoming data can be sparsely represented with a few components. However, the theory of CS framework including random sampling has been focused on exact recovery of signal; impreciseness in signal recovery has been neglected. This can be problematic when there is uncertainty in the number of sparse components such as signal sparsity in dynamic systems that can change over time. We present a new theoretical framework that handles uncertainty in signal recovery from the perspective of recovery success and quality. We show that the signal recovery success in our model is more accurate than the success probability analysis in the CS framework. Our model is then extended to the case where the success or failure of signal recovery can be relaxed. We represent the number of components included in signal recovery with a right-tailed distribution and focus on recovery quality. Experimental results confirm the accuracy of our model in dynamic systems.

Citations (1)

Summary

We haven't generated a summary for this paper yet.