Papers
Topics
Authors
Recent
2000 character limit reached

The robustness of democratic consensus

Published 15 Feb 2015 in cs.SY, cs.MA, math.OC, and math.PR | (1502.04264v1)

Abstract: In linear models of consensus dynamics, the state of the various agents converges to a value which is a convex combination of the agents' initial states. We call it democratic if in the large scale limit (number of agents going to infinity) the vector of convex weights converges to 0 uniformly. Democracy is a relevant property which naturally shows up when we deal with opinion dynamic models and cooperative algorithms such as consensus over a network: it says that each agent's measure/opinion is going to play a negligeable role in the asymptotic behavior of the global system. It can be seen as a relaxation of average consensus, where all agents have exactly the same weight in the final value, which becomes negligible for a large number of agents.

Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.