Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
9 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Bayesian Nonparametric IRT Model (1502.03339v1)

Published 11 Feb 2015 in stat.ME

Abstract: This paper introduces a flexible Bayesian nonparametric Item Response Theory (IRT) model, which applies to dichotomous or polytomous item responses, and which can apply to either unidimensional or multidimensional scaling. This is an infinite-mixture IRT model, with person ability and item difficulty parameters, and with a random intercept parameter that is assigned a mixing distribution, with mixing weights a probit function of other person and item parameters. As a result of its flexibility, the Bayesian nonparametric IRT model can provide outlier-robust estimation of the person ability parameters and the item difficulty parameters in the posterior distribution. The estimation of the posterior distribution of the model is undertaken by standard Markov chain Monte Carlo (MCMC) methods based on slice sampling. This mixture IRT model is illustrated through the analysis of real data obtained from a teacher preparation questionnaire, consisting of polytomous items, and consisting of other covariates that describe the examinees (teachers). For these data, the model obtains zero outliers and an R-squared of one. The paper concludes with a short discussion of how to apply the IRT model for the analysis of item response data, using menu-driven software that was developed by the author.

Summary

We haven't generated a summary for this paper yet.