Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

OE and W* superrigidity results for actions by surface braid groups (1502.02391v2)

Published 9 Feb 2015 in math.OA, math.DS, and math.GR

Abstract: We show that several important normal subgroups $\Gamma$ of the mapping class group of a surface satisfy the following property: any free, ergodic, probability measure preserving action $\Gamma \curvearrowright X$ is stably OE-superrigid. These include the central quotients of most surface braid groups and most Torelli groups and Johnson kernels. In addition, we show that all these groups satisfy the measure equivalence rigidity and we describe all their lattice-embeddings. Using these results in combination with previous results from [CIK13] we deduce that any free, ergodic, probability measure preserving action of almost any surface braid group is stably W*-superrigid, i.e., it can be completely reconstructed from its von Neumann algebra.

Summary

We haven't generated a summary for this paper yet.