Papers
Topics
Authors
Recent
Search
2000 character limit reached

Relative Singularity Categories

Published 9 Feb 2015 in math.RT and math.RA | (1502.02349v1)

Abstract: We study the properties of the relative derived category $D_{\mathscr{C}}{b}$($\mathscr{A}$) of an abelian category $\mathscr{A}$ relative to a full and additive subcategory $\mathscr{C}$. In particular, when $\mathscr{A}=A{\text -}\mod$ for a finite-dimensional algebra $A$ over a field and $\mathscr{C}$ is a contravariantly finite subcategory of $A$-$\mod$ which is admissible and closed under direct summands, the $\mathscr{C}$-singularity category $D_{\mathscr{C}{\text sg}}$($\mathscr{A}$)=$D_{\mathscr{C}}{b}$($\mathscr{A}$)/$K{b}(\mathscr{C})$ is studied. We give a sufficient condition when this category is triangulated equivalent to the stable category of the Gorenstein category $\mathscr{G}(\mathscr{C})$ of $\mathscr{C}$.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.