A Second Order Approximation for the Caputo Fractional Derivative (1502.00719v2)
Abstract: When $0<\alpha<1$, the approximation for the Caputo derivative $$y{(\alpha)}(x) = \frac{1}{\Gamma(2-\alpha)h\alpha}\sum_{k=0}n \sigma_k{(\alpha)} y(x-kh)+O\bigl(h{2-\alpha}\bigr),$$ where $\sigma_0{(\alpha)} = 1, \sigma_n{(\alpha)} = (n-1){1-a}-n{1-a}$ and $$\sigma_k{(\alpha)} = (k-1){1-\alpha}-2k{1-a}+(k+1){1-\alpha},\quad (k=1...,n-1),$$ has accuracy $O\bigl(h{2-\alpha}\bigr)$. We use the expansion of $\sum_{k=0}n k\alpha$ to determine an approximation for the fractional integral of order $2-\alpha$ and the second order approximation for the Caputo derivative $$y{(\alpha)}(x) = \frac{1}{\Gamma(2-\alpha)h\alpha}\sum_{k=0}n \delta_k{(\alpha)} y(x-kh)+O\bigl(h{2}\bigr),$$ where $\delta_k{(\alpha)} = \sigma_k{(\alpha)}$ for $2\leq k\leq n$, $$\delta_0{(\alpha)} = \sigma_0{(\alpha)}-\zeta(\alpha-1), \delta_1{(\alpha)} = \sigma_1{(\alpha)}+2\zeta(\alpha-1),\delta_2{(\alpha)} = \sigma_2{(\alpha)}-\zeta(\alpha-1),$$ and $\zeta(s)$ is the Riemann zeta function. The numerical solutions of the fractional relaxation and subdiffusion equations are computed.