Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal dynamic program for r-domination problems over tree decompositions (1502.00716v1)

Published 3 Feb 2015 in cs.DS

Abstract: There has been recent progress in showing that the exponential dependence on treewidth in dynamic programming algorithms for solving NP-hard problems are optimal under the Strong Exponential Time Hypothesis (SETH). We extend this work to $r$-domination problems. In $r$-dominating set, one wished to find a minimum subset $S$ of vertices such that every vertex of $G$ is within $r$ hops of some vertex in $S$. In connected $r$-dominating set, one additionally requires that the set induces a connected subgraph of $G$. We give a $O((2r+1){\mathrm{tw}} n)$ time algorithm for $r$-dominating set and a $O((2r+2){\mathrm{tw}} n{O(1)})$ time algorithm for connected $r$-dominating set in $n$-vertex graphs of treewidth $\mathrm{tw}$. We show that the running time dependence on $r$ and $\mathrm{tw}$ is the best possible under SETH. This adds to earlier observations that a "+1" in the denominator is required for connectivity constraints.

Citations (28)

Summary

We haven't generated a summary for this paper yet.