Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Constructing Near Spanning Trees with Few Local Inspections (1502.00413v2)

Published 2 Feb 2015 in math.CO and cs.DS

Abstract: Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. Motivated by several recent studies of local graph algorithms, we consider the following variant of this problem. Let G be a connected bounded-degree graph. Given an edge $e$ in $G$ we would like to decide whether $e$ belongs to a connected subgraph $G'$ consisting of $(1+\epsilon)n$ edges (for a prespecified constant $\epsilon >0$), where the decision for different edges should be consistent with the same subgraph $G'$. Can this task be performed by inspecting only a {\em constant} number of edges in $G$? Our main results are: (1) We show that if every $t$-vertex subgraph of $G$ has expansion $1/(\log t){1+o(1)}$ then one can (deterministically) construct a sparse spanning subgraph $G'$ of $G$ using few inspections. To this end we analyze a "local" version of a famous minimum-weight spanning tree algorithm. (2) We show that the above expansion requirement is sharp even when allowing randomization. To this end we construct a family of $3$-regular graphs of high girth, in which every $t$-vertex subgraph has expansion $1/(\log t){1-o(1)}$.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Reut Levi (21 papers)
  2. Guy Moshkovitz (17 papers)
  3. Dana Ron (32 papers)
  4. Ronitt Rubinfeld (48 papers)
  5. Asaf Shapira (47 papers)
Citations (19)