Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Downscaling Microwave Brightness Temperatures Using Self Regularized Regressive Models (1501.07683v1)

Published 30 Jan 2015 in cs.CV

Abstract: A novel algorithm is proposed to downscale microwave brightness temperatures ($\mathrm{T_B}$), at scales of 10-40 km such as those from the Soil Moisture Active Passive mission to a resolution meaningful for hydrological and agricultural applications. This algorithm, called Self-Regularized Regressive Models (SRRM), uses auxiliary variables correlated to $\mathrm{T_B}$ along-with a limited set of \textit{in-situ} SM observations, which are converted to high resolution $\mathrm{T_B}$ observations using biophysical models. It includes an information-theoretic clustering step based on all auxiliary variables to identify areas of similarity, followed by a kernel regression step that produces downscaled $\mathrm{T_B}$. This was implemented on a multi-scale synthetic data-set over NC-Florida for one year. An RMSE of 5.76~K with standard deviation of 2.8~k was achieved during the vegetated season and an RMSE of 1.2~K with a standard deviation of 0.9~K during periods of no vegetation.

Citations (4)

Summary

We haven't generated a summary for this paper yet.