Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monadic Second-Order Logic and Bisimulation Invariance for Coalgebras (1501.07215v1)

Published 28 Jan 2015 in cs.LO

Abstract: Generalizing standard monadic second-order logic for Kripke models, we introduce monadic second-order logic interpreted over coalgebras for an arbitrary set functor. Similar to well-known results for monadic second-order logic over trees, we provide a translation of this logic into a class of automata, relative to the class of coalgebras that admit a tree-like supporting Kripke frame. We then consider invariance under behavioral equivalence of formulas; more in particular, we investigate whether the coalgebraic mu-calculus is the bisimulation-invariant fragment of monadic second-order logic. Building on recent results by the third author we show that in order to provide such a coalgebraic generalization of the Janin-Walukiewicz Theorem, it suffices to find what we call an adequate uniform construction for the functor. As applications of this result we obtain a partly new proof of the Janin-Walukiewicz Theorem, and bisimulation invariance results for the bag functor (graded modal logic) and all exponential polynomial functors. Finally, we consider in some detail the monotone neighborhood functor, which provides coalgebraic semantics for monotone modal logic. It turns out that there is no adequate uniform construction for this functor, whence the automata-theoretic approach towards bisimulation invariance does not apply directly. This problem can be overcome if we consider global bisimulations between neighborhood models: one of our main technical results provides a characterization of the monotone modal mu-calculus extended with the global modalities, as the fragment of monadic second-order logic for the monotone neighborhood functor that is invariant for global bisimulations.

Citations (19)

Summary

We haven't generated a summary for this paper yet.