Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
149 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On asymptotic value for dynamic games with saddle point (1501.06933v1)

Published 27 Jan 2015 in math.OC

Abstract: The paper is concerned with two-person games with saddle point. We investigate the limits of value functions for long-time-average payoff, discounted average payoff, and the payoff that follows a probability density. Most of our assumptions restrict the dynamics of games. In particular, we assume the closedness of strategies under concatenation. It is also necessary for the value function to satisfy BeLLMan's optimality principle, even if in a weakened, asymptotic sense. We provide two results. The first one is a uniform Tauber result for games: if the value functions for long-time-average payoff converge uniformly, then there exists the uniform limit for probability densities from a sufficiently broad set; moreover, these limits coincide. The second one is the uniform Abel result: if a uniform limit for self-similar densities exists, then the uniform limit for long-time average payoff also exists, and they coincide.

Citations (8)

Summary

We haven't generated a summary for this paper yet.