Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Proximal point algorithm, Douglas-Rachford algorithm and alternating projections: a case study (1501.06603v1)

Published 26 Jan 2015 in math.OC

Abstract: Many iterative methods for solving optimization or feasibility problems have been invented, and often convergence of the iterates to some solution is proven. Under favourable conditions, one might have additional bounds on the distance of the iterate to the solution leading thus to worst case estimates, i.e., how fast the algorithm must converge. Exact convergence estimates are typically hard to come by. In this paper, we consider the complementary problem of finding best case estimates, i.e., how slow the algorithm has to converge, and we also study exact asymptotic rates of convergence. Our investigation focuses on convex feasibility in the Euclidean plane, where one set is the real axis while the other is the epigraph of a convex function. This case study allows us to obtain various convergence rate results. We focus on the popular method of alternating projections and the Douglas-Rachford algorithm. These methods are connected to the proximal point algorithm which is also discussed. Our findings suggest that the Douglas-Rachford algorithm outperforms the method of alternating projections in the absence of constraint qualifications. Various examples illustrate the theory.

Summary

We haven't generated a summary for this paper yet.