Intrinsic Contractivity of Feynman-Kac Semigroups for Symmetric Jump Processes with Infinite Range Jumps (1501.06128v2)
Abstract: Let $(X_t){t\ge 0}$ be a symmetric strong Markov process generated by non-local regular Dirichlet form $(D,\D(D))$ as follows \begin{equation*} \begin{split} & D(f,g)=\int{\Rd}\int_{\Rd}\big(f(x)-f(y)\big)\big(g(x)-g(y)\big) J(x,y)\,dx\,dy, \quad f,g\in \D(D) \end{split} \end{equation*} where $J(x,y)$ is a strictly positive and symmetric measurable function on $\Rd\times \Rd$. We study the intrinsic hypercontractivity, intrinsic supercontractivity and intrinsic ultracontractivity for the Feynman-Kac semigroup $$ TV_t(f)(x)=\Eex\left(\exp\Big(-\int_0tV(X_s)\,ds\Big)f(X_t)\right),\,\, x\in\Rd, f\in L2(\Rd;dx).$$ In particular, we prove that for $$J(x,y)\asymp|x-y|{-d-\alpha}\I_{{|x-y|\le 1}}+e{-|x-y|}\I_{{|x-y|> 1}}$$ with $\alpha \in (0,2)$ and $V(x)=|x|\lambda$ with $\lambda>0$, $(T_tV)_{t\ge 0}$ is intrinsically ultracontractive if and only if $\lambda>1$; and that for symmetric $\alpha$-stable process $(X_t){t\ge0}$ with $\alpha \in (0,2)$ and $V(x)=\log\lambda(1+|x|)$ with some $\lambda>0$, $(T_tV){t\ge 0}$ is intrinsically ultracontractive (or intrinsically supercontractive) if and only if $\lambda>1$, and $(T_tV)_{t\ge 0}$ is intrinsically hypercontractive if and only if $\lambda\ge1$. Besides, we also investigate intrinsic contractivity properties of $(T_tV)_{t \ge 0}$ for the case that $\liminf_{|x| \to \infty}V(x)<\infty$.