Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simpler condition for consistency of a kernel independence test (1501.06103v1)

Published 25 Jan 2015 in stat.ML

Abstract: A statistical test of independence may be constructed using the Hilbert-Schmidt Independence Criterion (HSIC) as a test statistic. The HSIC is defined as the distance between the embedding of the joint distribution, and the embedding of the product of the marginals, in a Reproducing Kernel Hilbert Space (RKHS). It has previously been shown that when the kernel used in defining the joint embedding is characteristic (that is, the embedding of the joint distribution to the feature space is injective), then the HSIC-based test is consistent. In particular, it is sufficient for the product of kernels on the individual domains to be characteristic on the joint domain. In this note, it is established via a result of Lyons (2013) that HSIC-based independence tests are consistent when kernels on the marginals are characteristic on their respective domains, even when the product of kernels is not characteristic on the joint domain.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Arthur Gretton (127 papers)
Citations (23)

Summary

We haven't generated a summary for this paper yet.