Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A simple Bayesian procedure for forecasting the outcomes of the UEFA Champions League matches (1501.05831v2)

Published 23 Jan 2015 in stat.AP

Abstract: This article presents a Bayesian implementation of a cumulative probit model to forecast the outcomes of the UEFA Champions League matches. The argument of the normal CDF involves a cut-off point, a home vs away playing effect and the difference in strength of the two competing teams. Team strength is assumed to follow a Gaussian distribution the expectation of which is expressed as a linear regression on an external rating of the team from eg the UEFA Club Ranking (UEFACR) or the Football Club World Ranking (FCWR). Priors on these parameters are updated at the beginning of each season from their posterior distributions obtained at the end of the previous one. This allows making predictions of match results for each phase of the competition: group stage and knock-out. An application is presented for the 2013-2014 season. Adjustment based on the FCWR performs better than on UEFACR.

Summary

We haven't generated a summary for this paper yet.