Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Global weak solutions for the three-dimensional chemotaxis-Navier-Stokes system with nonlinear diffusion (1501.05171v1)

Published 21 Jan 2015 in math.AP

Abstract: We consider an initial-boundary value problem for the incompressible chemotaxis-Navier-Stokes equations generalizing the porous-medium-type diffusion model $ \quad n_t+u\cdot\nabla n=\Delta nm-\nabla\cdot(n\chi(c)\nabla c), $ $ \quad c_t+u\cdot\nabla c=\Delta c-nf(c), $ $ \quad u_t+\kappa(u\cdot\nabla)u=\Delta u+\nabla P+n\nabla\Phi, $ $ \quad \nabla\cdot u=0, $ in a bounded convex domain $\Omega\subset\mathbb{R}3$. It is proved that if $m\geq\frac{2}{3}$, $\kappa\in\mathbb{R}$, $0<\chi\in C2([0,\infty))$, $0\leq f\in C1([0,\infty))$ with $f(0)=0$ and $\Phi\in W{1,\infty}(\Omega)$, then for sufficiently smooth initial data $(n_0, c_0, u_0)$ the model possesses at least one global weak solution.

Summary

We haven't generated a summary for this paper yet.