Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Insufficiency of the Brauer-Manin obstruction for Enriques surfaces (1501.04974v1)

Published 20 Jan 2015 in math.NT and math.AG

Abstract: In 2011, V`arilly-Alvarado and the last author constructed an Enriques surface $X$ over $\mathbb{Q}$ with an \'etale-Brauer obstruction to the Hasse principle and no algebraic Brauer-Manin obstruction. In this paper, we show that the nontrivial Brauer class of $X_{\bar{\mathbb{Q}}}$ does not descend to $\mathbb{Q}$. Together with the results of V`arilly-Alvarado and the last author, this proves that the Brauer-Manin obstruction is insufficient to explain all failures of the Hasse principle on Enriques surfaces. The methods of this paper build on the ideas in several papers by the last author and various collaborators: we study geometrically unramified Brauer classes on $X$ via pullback of ramified Brauer classes on a rational surface. Notably, we develop techniques which work over fields which are not necessarily separably closed, in particular, over number fields.

Summary

We haven't generated a summary for this paper yet.