Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A lattice on decreasing trees : the metasylvester lattice (1501.04868v1)

Published 20 Jan 2015 in math.CO

Abstract: We introduce a new combinatorial structure: the metasylvester lattice on decreasing trees. It appears in the context of the $m$-Tamari lattices and other related $m$-generalizations. The metasylvester congruence has been recently introduced by Novelli and Thibon. We show that it defines a sublattice of the $m$-permutations where elements can be represented by decreasing labelled trees: the metasylvester lattice. We study the combinatorial properties of this new structure. In particular, we give different realizations of the lattice. The $m$-Tamari lattice is by definition a sublattice of our newly defined metasylvester lattice. It leads us to a new realization of the $m$-Tamari lattice, using certain chains of the classical Tamari lattice.

Summary

We haven't generated a summary for this paper yet.