Spectral analysis for the exceptional $X_m$-Jacobi equation
Abstract: We provide the mathematical foundation for the $X_m$-Jacobi spectral theory. Namely, we present a self-adjoint operator associated to the differential expression with the exceptional $X_m$-Jacobi orthogonal polynomials as eigenfunctions. This proves that those polynomials are indeed eigenfunctions of the self-adjoint operator (rather than just formal eigenfunctions). Further, we prove the completeness of the exceptional $X_m$-Jacobi orthogonal polynomials (of degrees $m, m+1, m+2, ...$) in the Lebesgue--Hilbert space with the appropriate weight. In particular, the self-adjoint operator has no other spectrum.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.