Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Community Detection from Location-Tagged Networks (1501.04675v1)

Published 19 Jan 2015 in cs.SI and physics.soc-ph

Abstract: Many real world systems or web services can be represented as a network such as social networks and transportation networks. In the past decade, many algorithms have been developed to detect the communities in a network using connections between nodes. However in many real world networks, the locations of nodes have great influence on the community structure. For example, in a social network, more connections are established between geographically proximate users. The impact of locations on community has not been fully investigated by the research literature. In this paper, we propose a community detection method which takes locations of nodes into consideration. The goal is to detect communities with both geographic proximity and network closeness. We analyze the distribution of the distances between connected and unconnected nodes to measure the influence of location on the network structure on two real location-tagged social networks. We propose a method to determine if a location-based community detection method is suitable for a given network. We propose a new community detection algorithm that pushes the location information into the community detection. We test our proposed method on both synthetic data and real world network datasets. The results show that the communities detected by our method distribute in a smaller area compared with the traditional methods and have the similar or higher tightness on network connections.

Citations (6)

Summary

We haven't generated a summary for this paper yet.