Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From complexity to algebra and back: digraph classes, collapsibility and the PGP (1501.04558v2)

Published 19 Jan 2015 in cs.CC

Abstract: Inspired by computational complexity results for the quantified constraint satisfaction problem, we study the clones of idempotent polymorphisms of certain digraph classes. Our first results are two algebraic dichotomy, even "gap", theorems. Building on and extending [Martin CP'11], we prove that partially reflexive paths bequeath a set of idempotent polymorphisms whose associated clone algebra has: either the polynomially generated powers property (PGP); or the exponentially generated powers property (EGP). Similarly, we build on [DaMM ICALP'14] to prove that semicomplete digraphs have the same property. These gap theorems are further motivated by new evidence that PGP could be the algebraic explanation that a QCSP is in NP even for unbounded alternation. Along the way we also effect a study of a concrete form of PGP known as collapsibility, tying together the algebraic and structural threads from [Chen Sicomp'08], and show that collapsibility is equivalent to its $\Pi_2$-restriction. We also give a decision procedure for $k$-collapsibility from a singleton source of a finite structure (a form of collapsibility which covers all known examples of PGP for finite structures). Finally, we present a new QCSP trichotomy result, for partially reflexive paths with constants. Without constants it is known these QCSPs are either in NL or Pspace-complete [Martin CP'11], but we prove that with constants they attain the three complexities NL, NP-complete and Pspace-complete.

Citations (12)

Summary

We haven't generated a summary for this paper yet.