Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
140 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The quantum divided power algebra of a finite-dimensional Nichols algebra of diagonal type (1501.04518v5)

Published 19 Jan 2015 in math.QA and math.RA

Abstract: Let $\mathcal{B}\mathfrak{q}$ be a finite-dimensional Nichols algebra of diagonal type corresponding to a matrix $\mathfrak{q}$. We consider the graded dual $\mathcal{L}{\mathfrak{q}}$ of the distinguished pre-Nichols algebra $\widetilde{\mathcal{B}}{\mathfrak{q}}$ from [A3] and the divided powers algebra $\mathcal{U}{\mathfrak{q}}$, a suitable Drinfeld double of $\mathcal{L}{\mathfrak{q}} # \mathbf{k} \mathbb{Z}{\theta}$. We provide basis and presentations by generators and relations of $\mathcal{L}{\mathfrak{q}}$ and $\mathcal{U}_{\mathfrak{q}}$, and prove that they are noetherian and have finite Gelfand-Kirillov dimension.

Summary

We haven't generated a summary for this paper yet.