Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noetherian Rings Whose Annihilating-Ideal Graphs Have finite Genus (1501.04329v1)

Published 18 Jan 2015 in math.RA

Abstract: Let $R$ be a commutative ring and ${\Bbb{A}}(R)$ be the set of ideals with non-zero annihilators. The annihilating-ideal graph of $R$ is defined as the graph ${\Bbb{AG}}(R)$ with vertex set ${\Bbb{A}}(R)*={\Bbb{A}}\setminus{(0)}$ such that two distinct vertices $I$ and $J$ are adjacent if and only if $IJ=(0)$. We characterize commutative Noetherian rings $R$ whose annihilating-ideal graphs have finite genus $\gamma(\Bbb{AG}(R))$. It is shown that if $R$ is a Noetherian ring such that $0<\gamma(\Bbb{AG}(R))<\infty$, then $R$ has only finitely many ideals.

Summary

We haven't generated a summary for this paper yet.