Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generalized Toeplitz plus Hankel operators: kernel structure and defect numbers (1501.04271v1)

Published 18 Jan 2015 in math.FA

Abstract: Generalized Toeplitz plus Hankel operators $T(a)+H_{\alpha}(b)$ generated by functions $a,b$ and a linear fractional Carleman shift $\alpha$ changing the orientation of the unit circle $\mathbb{T}$ are considered on the Hardy spaces $Hp(\mathbb{T})$, $1<p<\infty$. If the functions $a,b\in L\infty(\mathbb{T})$ and satisfy the condition $$ a(t) a(\alpha(t))=b(t) b(\alpha(t)),\quad t\in \mathbb{T}, $$ the defect numbers of the operators $T(a)+H_{\alpha}(b)$ are established and an explicit description of the structure of the kernels and cokernels of the operators mentioned is given.

Summary

We haven't generated a summary for this paper yet.