Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Profinite Techniques for Probabilistic Automata and the Markov Monoid Algorithm (1501.02997v4)

Published 13 Jan 2015 in cs.FL and cs.LO

Abstract: We consider the value 1 problem for probabilistic automata over finite words: it asks whether a given probabilistic automaton accepts words with probability arbitrarily close to 1. This problem is known to be undecidable. However, different algorithms have been proposed to partially solve it; it has been recently shown that the Markov Monoid algorithm, based on algebra, is the most correct algorithm so far. The first contribution of this paper is to give a characterisation of the Markov Monoid algorithm. The second contribution is to develop a profinite theory for probabilistic automata, called the prostochastic theory. This new framework gives a topological account of the value 1 problem, which in this context is cast as an emptiness problem. The above characterisation is reformulated using the prostochastic theory, allowing us to give a simple and modular proof.

Citations (4)

Summary

We haven't generated a summary for this paper yet.