Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Riemannian Metric Learning for Symmetric Positive Definite Matrices (1501.02393v1)

Published 10 Jan 2015 in cs.CV and cs.LG

Abstract: Over the past few years, symmetric positive definite (SPD) matrices have been receiving considerable attention from computer vision community. Though various distance measures have been proposed in the past for comparing SPD matrices, the two most widely-used measures are affine-invariant distance and log-Euclidean distance. This is because these two measures are true geodesic distances induced by Riemannian geometry. In this work, we focus on the log-Euclidean Riemannian geometry and propose a data-driven approach for learning Riemannian metrics/geodesic distances for SPD matrices. We show that the geodesic distance learned using the proposed approach performs better than various existing distance measures when evaluated on face matching and clustering tasks.

Citations (47)

Summary

We haven't generated a summary for this paper yet.