Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Long-term causal effects via behavioral game theory (1501.02315v8)

Published 10 Jan 2015 in stat.ME, cs.AI, and cs.MA

Abstract: Planned experiments are the gold standard in reliably comparing the causal effect of switching from a baseline policy to a new policy. One critical shortcoming of classical experimental methods, however, is that they typically do not take into account the dynamic nature of response to policy changes. For instance, in an experiment where we seek to understand the effects of a new ad pricing policy on auction revenue, agents may adapt their bidding in response to the experimental pricing changes. Thus, causal effects of the new pricing policy after such adaptation period, the {\em long-term causal effects}, are not captured by the classical methodology even though they clearly are more indicative of the value of the new policy. Here, we formalize a framework to define and estimate long-term causal effects of policy changes in multiagent economies. Central to our approach is behavioral game theory, which we leverage to formulate the ignorability assumptions that are necessary for causal inference. Under such assumptions we estimate long-term causal effects through a latent space approach, where a behavioral model of how agents act conditional on their latent behaviors is combined with a temporal model of how behaviors evolve over time.

Citations (2)

Summary

We haven't generated a summary for this paper yet.