Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Testing independence in high dimensions with sums of rank correlations (1501.01732v3)

Published 8 Jan 2015 in math.ST and stat.TH

Abstract: We treat the problem of testing independence between m continuous variables when m can be larger than the available sample size n. We consider three types of test statistics that are constructed as sums or sums of squares of pairwise rank correlations. In the asymptotic regime where both m and n tend to infinity, a martingale central limit theorem is applied to show that the null distributions of these statistics converge to Gaussian limits, which are valid with no specific distributional or moment assumptions on the data. Using the framework of U-statistics, our result covers a variety of rank correlations including Kendall's tau and a dominating term of Spearman's rank correlation coefficient (rho), but also degenerate U-statistics such as Hoeffding's $D$, or the $\tau*$ of Bergsma and Dassios (2014). As in the classical theory for U-statistics, the test statistics need to be scaled differently when the rank correlations used to construct them are degenerate U-statistics. The power of the considered tests is explored in rate-optimality theory under Gaussian equicorrelation alternatives as well as in numerical experiments for specific cases of more general alternatives.

Summary

We haven't generated a summary for this paper yet.