Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Robust high-dimensional precision matrix estimation (1501.01219v2)

Published 6 Jan 2015 in stat.ME

Abstract: The dependency structure of multivariate data can be analyzed using the covariance matrix $\Sigma$. In many fields the precision matrix $\Sigma{-1}$ is even more informative. As the sample covariance estimator is singular in high-dimensions, it cannot be used to obtain a precision matrix estimator. A popular high-dimensional estimator is the graphical lasso, but it lacks robustness. We consider the high-dimensional independent contamination model. Here, even a small percentage of contaminated cells in the data matrix may lead to a high percentage of contaminated rows. Downweighting entire observations, which is done by traditional robust procedures, would then results in a loss of information. In this paper, we formally prove that replacing the sample covariance matrix in the graphical lasso with an elementwise robust covariance matrix leads to an elementwise robust, sparse precision matrix estimator computable in high-dimensions. Examples of such elementwise robust covariance estimators are given. The final precision matrix estimator is positive definite, has a high breakdown point under elementwise contamination and can be computed fast.

Summary

We haven't generated a summary for this paper yet.