Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Detecting Malicious Code by Exploiting Dependencies of System-call Groups (1412.8712v1)

Published 30 Dec 2014 in cs.CR

Abstract: In this paper we present an elaborated graph-based algorithmic technique for efficient malware detection. More precisely, we utilize the system-call dependency graphs (or, for short ScD graphs), obtained by capturing taint analysis traces and a set of various similarity metrics in order to detect whether an unknown test sample is a malicious or a benign one. For the sake of generalization, we decide to empower our model against strong mutations by applying our detection technique on a weighted directed graph resulting from ScD graph after grouping disjoint subsets of its vertices. Additionally, we have developed a similarity metric, which we call NP-similarity, that combines qualitative, quantitative, and relational characteristics that are spread among the members of known malware families to archives a clear distinction between graph-representations of malware and the ones of benign software. Finally, we evaluate our detection model and compare our results against the results achieved by a variety of techniques proving the potentials of our model.

Citations (6)

Summary

We haven't generated a summary for this paper yet.