Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
134 tokens/sec
GPT-4o
10 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Exponential decay of loop lengths in the loop $O(n)$ model with large $n$ (1412.8326v3)

Published 29 Dec 2014 in math-ph, math.MP, and math.PR

Abstract: The loop $O(n)$ model is a model for a random collection of non-intersecting loops on the hexagonal lattice, which is believed to be in the same universality class as the spin $O(n)$ model. It has been conjectured that both the spin and the loop $O(n)$ models exhibit exponential decay of correlations when $n>2$. We verify this for the loop $O(n)$ model with large parameter $n$, showing that long loops are exponentially unlikely to occur, uniformly in the edge weight $x$. Our proof provides further detail on the structure of typical configurations in this regime. Putting appropriate boundary conditions, when $nx6$ is sufficiently small, the model is in a dilute, disordered phase in which each vertex is unlikely to be surrounded by any loops, whereas when $nx6$ is sufficiently large, the model is in a dense, ordered phase which is a small perturbation of one of the three ground states.

Summary

We haven't generated a summary for this paper yet.