Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic independence of Mahler functions via radial asymptotics (1412.7906v2)

Published 26 Dec 2014 in math.NT and math.CA

Abstract: We present a new method for algebraic independence results in the context of Mahler's method. In particular, our method uses the asymptotic behaviour of a Mahler function $f(z)$ as $z$ goes radially to a root of unity to deduce algebraic independence results about the values of $f(z)$ at algebraic numbers. We apply our method to the canonical example of a degree two Mahler function; that is, we apply it to $F(z)$, the power series solution to the functional equation $F(z)-(1+z+z2)F(z4)+z4F(z{16})=0$. Specifically, we prove that the functions $F(z)$, $F(z4)$, $F'(z)$, and $F'(z4)$ are algebraically independent over $\mathbb{C}(z)$. An application of a celebrated result of Nishioka then allows one to replace $\mathbb{C}(z)$ by $\mathbb{Q}$ when evaluating these functions at a nonzero algebraic number $\alpha$ in the unit disc.

Citations (20)

Summary

We haven't generated a summary for this paper yet.