Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Greedy Algorithms for Steiner Forest (1412.7693v1)

Published 24 Dec 2014 in cs.DS

Abstract: In the Steiner Forest problem, we are given terminal pairs ${s_i, t_i}$, and need to find the cheapest subgraph which connects each of the terminal pairs together. In 1991, Agrawal, Klein, and Ravi, and Goemans and Williamson gave primal-dual constant-factor approximation algorithms for this problem; until now, the only constant-factor approximations we know are via linear programming relaxations. We consider the following greedy algorithm: Given terminal pairs in a metric space, call a terminal "active" if its distance to its partner is non-zero. Pick the two closest active terminals (say $s_i, t_j$), set the distance between them to zero, and buy a path connecting them. Recompute the metric, and repeat. Our main result is that this algorithm is a constant-factor approximation. We also use this algorithm to give new, simpler constructions of cost-sharing schemes for Steiner forest. In particular, the first "group-strict" cost-shares for this problem implies a very simple combinatorial sampling-based algorithm for stochastic Steiner forest.

Citations (21)

Summary

We haven't generated a summary for this paper yet.