Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fusing Color and Texture Cues to Categorize the Fruit Diseases from Images (1412.7277v1)

Published 23 Dec 2014 in cs.CV

Abstract: The economic and production losses in agricultural industry worldwide are due to the presence of diseases in the several kinds of fruits. In this paper, a method for the classification of fruit diseases is proposed and experimentally validated. The image processing based proposed approach is composed of the following main steps; in the first step K-Means clustering technique is used for the defect segmentation, in the second step color and textural cues are extracted and fused from the segmented image, and finally images are classified into one of the classes by using a Multi-class Support Vector Machine. We have considered diseases of apple as a test case and evaluated our approach for three types of apple diseases namely apple scab, apple blotch and apple rot and normal apples without diseases. Our experimentation points out that the proposed fusion scheme can significantly support accurate detection and automatic classification of fruit diseases.

Citations (10)

Summary

We haven't generated a summary for this paper yet.