Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Quantizations of multiplicative hypertoric varieties at a root of unity (1412.7211v2)

Published 22 Dec 2014 in math.QA, math.AG, and math.RT

Abstract: We construct quantizations of multiplicative hypertoric varieties using an algebra of q-difference operators on affine space, where q is a root of unity in C. The quantization defines a matrix bundle (i.e. Azumaya algebra) over the multiplicative hypertoric variety and admits an explicit finite \'etale splitting. The global sections of this Azumaya algebra is a hypertoric quantum group, and we prove a localization theorem. We introduce a general framework of Frobenius quantum moment maps and their Hamiltonian reductions; our results shed light on an instance of this framework.

Summary

We haven't generated a summary for this paper yet.