Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Representation Learning for cold-start recommendation (1412.7156v5)

Published 22 Dec 2014 in cs.IR and cs.LG

Abstract: A standard approach to Collaborative Filtering (CF), i.e. prediction of user ratings on items, relies on Matrix Factorization techniques. Representations for both users and items are computed from the observed ratings and used for prediction. Unfortunatly, these transductive approaches cannot handle the case of new users arriving in the system, with no known rating, a problem known as user cold-start. A common approach in this context is to ask these incoming users for a few initialization ratings. This paper presents a model to tackle this twofold problem of (i) finding good questions to ask, (ii) building efficient representations from this small amount of information. The model can also be used in a more standard (warm) context. Our approach is evaluated on the classical CF problem and on the cold-start problem on four different datasets showing its ability to improve baseline performance in both cases.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gabriella Contardo (29 papers)
  2. Ludovic Denoyer (51 papers)
  3. Thierry Artieres (14 papers)
Citations (9)