Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Local convergence of large critical multi-type Galton-Watson trees and applications to random maps (1412.6911v2)

Published 22 Dec 2014 in math.PR

Abstract: We show that large critical multi-type Galton-Watson trees, when conditioned to be large, converge locally in distribution to an infinite tree which is analoguous to Kesten's infinite monotype Galton-Watson tree. This is proven when we condition on the number of vertices of one fixed types, and with an extra technical assumption if we count at least two types. We then apply these results to study local limits of random planar maps, showing that large critical Boltzmann-distributed random maps converge in distribution to an infinite map.

Summary

We haven't generated a summary for this paper yet.