Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Contour Detection Using Cost-Sensitive Convolutional Neural Networks (1412.6857v5)

Published 22 Dec 2014 in cs.CV, cs.LG, and cs.NE

Abstract: We address the problem of contour detection via per-pixel classifications of edge point. To facilitate the process, the proposed approach leverages with DenseNet, an efficient implementation of multiscale convolutional neural networks (CNNs), to extract an informative feature vector for each pixel and uses an SVM classifier to accomplish contour detection. The main challenge lies in adapting a pre-trained per-image CNN model for yielding per-pixel image features. We propose to base on the DenseNet architecture to achieve pixelwise fine-tuning and then consider a cost-sensitive strategy to further improve the learning with a small dataset of edge and non-edge image patches. In the experiment of contour detection, we look into the effectiveness of combining per-pixel features from different CNN layers and obtain comparable performances to the state-of-the-art on BSDS500.

Citations (3)

Summary

We haven't generated a summary for this paper yet.